Separating invariants for arbitrary linear actions of the additive group

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Separating Invariants for Arbitrary Linear Actions of the Additive Group

We consider an arbitrary representation of the additive group Ga over a field of characteristic zero and give an explicit description of a finite separating set in the corresponding ring of invariants.

متن کامل

Novikov-Shubin invariants for arbitrary group actions and their positivity

We extend the notion of Novikov-Shubin invariant for free Γ-CW complexes of finite type to spaces with arbitrary Γ-actions and prove some statements about their positivity. In particular we apply this to classifying spaces of discrete groups.

متن کامل

Invariants of Algebraic Group Actions in Arbitrary Characteristic

Let G be an affine algebraic group acting on an affine variety X. We present an algorithm for computing generators of the invariant ring K[X] in the case where G is reductive. Furthermore, we address the case where G is connected and unipotent, so the invariant ring need not be finitely generated. For this case, we develop an algorithm which computes K[X] in terms of a so-called colon-operation...

متن کامل

Computing Invariants of Algebraic Group Actions in Arbitrary Characteristic

Let G be an affine algebraic group acting on an affine variety X. We present an algorithm for computing generators of the invariant ring K[X] in the case where G is reductive. Furthermore, we address the case where G is connected and unipotent, so the invariant ring need not be finitely generated. For this case, we develop an algorithm which computes K[X] in terms of a so-called colon-operation...

متن کامل

Invariants of Formal Group Law Actions

0. Introduction. In this note, k denotes a field of characteristic p > 0, and the letters T, X and Y are formal indeterminants. Let F: k[[T]] —• /c[[X,Y]] be a (fixed) one-dimensional formal group law [Dieudonné, Hazewinkel, Lazard, Lubin] of height h > 0. Let V denote a k[[T]] module of finite length. Suppose Ann(V) = (T). Let q = p denote the least power of p such that n < q. It follows that ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Manuscripta Mathematica

سال: 2013

ISSN: 0025-2611,1432-1785

DOI: 10.1007/s00229-013-0625-y